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Figure 1: UniPixel flexibly supports a large variety of fine-grained image and video understanding
tasks, including referring/reasoning/interactive segmentation, motion-grounded video reasoning, and
referred video description & question answering. It can also handle a novel PixelQA task that jointly
requires object-centric referring, segmentation, and question answering in videos.

Abstract

Recent advances in Large Multi-modal Models (LMMs) have demonstrated their
remarkable success as general-purpose multi-modal assistants, with particular
focuses on holistic image- and video-language understanding. Conversely, less
attention has been given to scaling fine-grained pixel-level understanding capabili-
ties, where the models are expected to realize pixel-level alignment between visual
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signals and language semantics. Some previous studies have applied LMMs to
related tasks such as region-level captioning and referring expression segmentation.
However, these models are limited to performing either referring or segmentation
tasks independently and fail to integrate these fine-grained perception capabilities
into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal
model capable of flexibly comprehending visual prompt inputs and generating
mask-grounded responses. Our model distinguishes itself by seamlessly integrating
pixel-level perception with general visual understanding capabilities. Specifically,
UniPixel processes visual prompts and generates relevant masks on demand, and
performs subsequent reasoning conditioning on these intermediate pointers during
inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness
of our approach has been verified on 10 benchmarks across a diverse set of tasks,
including pixel-level referring/segmentation and object-centric understanding in
images/videos. A novel PixelQA task that jointly requires referring, segmentation,
and question answering is also designed to verify the flexibility of our method.

1 Introduction

Large Multi-modal Models (LMM:s) have been the de facto standard for developing general-purpose
assistants. By effectively aligning multi-modalities with language, their significance has been demon-
strated across various applications, including multi-modal analysis [60, 20 [1| 44} 49], autonomous
driving (AD) [177, 181} 103} [12], and Embodied Al [[106, 23} 131 96].

In the field of visual-language understanding, efforts have been dedicated to developing holistic
understanding models, where simple projection layers between visual encoders and LLMs are utilized
to bridge vision and language modalities. Supported by large-scale alignment pre-training and
visual instruction tuning, such a straightforward paradigm achieves strong performance in holistic
understanding tasks such as captioning [41} [7, [109] and general question answering [37} 125} 55,
50]. However, these models exhibit two fundamental limitations in fine-grained scenarios. First,
their interactions with users are limited to text format, lacking support for more intuitive forms of
communication such as drawing points/boxes as references or grounding model responses with key
regions represented by masks. Second, the internal reasoning process of these models predominantly
operates at a coarse level, directly perceiving the entire content rather than reasoning over specific
objects/regions, making them hard to understand fine-grained details. Some previous studies have
explored the application of LMMs to related tasks such as region-level captioning [[13| 99, [100],
referring expression segmentation [30, |56l 42} 22| [73] [64], and reasoning segmentation [33, 28|
93 15, [107]. Nevertheless, their models are limited to performing either referring or segmentation
tasks independently via rigidly defined input/output templates (e.g., “It’s <SEG>.” in LISA [33]),
lacking the flexibility to comprehend user-referred concepts and generate mask-grounded responses
simultaneously. More importantly, these methods cannot integrate such fine-grained perception
capabilities with their original multi-modal reasoning abilities, resulting in degraded performance on
general visual understanding benchmarks [97, 90} 29]].

In this work, we seek to bridge this gap by introducing UniPixel, a large multi-modal model that
can flexibly comprehend visual prompt inputs (i.e., points, boxes, and masks) and generate mask-
grounded responses. Our model significantly differentiates itself from existing ones by unifying
the internal representations of referred and segmented objects via a novel object memory bank,
which is a hashmap storing the spatial-temporal information of object-of-interests. During inference,
UniPixel initializes the object memory bank and updates it on demand by adding object-centric
information according to the context. The model responses are then generated conditioning on the
fine-grained object memory. Benefits from such unification, UniPixel is able to perform not only basic
referring/segmentation tasks, but also flexible pixel-level reasoning tasks that require simultaneous
visual prompt comprehension and mask prediction. As illustrated in Fig. [T (the last row), given a
Vide(ffJ a question, and optionally a visual prompt (e.g., a point specified by a click on an object in
any frame), UniPixel can (1) infer the mask for the referred object in the corresponding frame, (2)
propagate it to all video frames containing the same instance, (3) extract the mask-grounded object
features, and finally (4) answer the question conditioning on both the video-level and object-centric

2Images are treated as single-frame videos, thus we do not explicitly differentiate them in this work.
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Figure 2: Schematic comparison between UniPixel and its counterparts. To the best of our knowl-
edge, UniPixel is the first unified method supporting simultaneous object referring and segmentation.

information. All these operations are seamlessly conducted within a single model, eliminating the
need for external frame samplers [93]], mask generators [99} [100]], or object trackers [S]].

We evaluate the effectiveness of UniPixel from two aspects, i.e., basic referring/segmentation ca-
pabilities and flexible pixel-level reasoning capabilities. For the first aspect, we conduct extensive
experiments on 10 public benchmarks across 9 image/video referring/segmentation tasks. Our method
achieves state-of-the-art performance in diverse scenarios. Notably, on the challenging video reason-
ing segmentation and referred video QA tasks, our 3B model obtains 62.1 7 &F on ReVOS [93] and
72.8% Acc on VideoRefer-Bench® [100], surpassing strong counterparts with 7B ~ 13B parameters.
Further ablation studies also demonstrate the mutual reinforcement effect of referring and segmenta-
tion. For the second aspect, we introduce a novel PixelQA task that jointly requires object-centric
referring, segmentation, and QA in videos, which cannot be handled by existing methods. UniPixel
establishes a strong baseline for this novel setting. Our contributions are summarized below:

1. We propose UniPixel, a unified large multi-modal model that supports flexible object referring
and segmentation in images and videos, via a novel object memory bank design.

2. Our model achieves state-of-the-art performance on 10 public benchmarks across 9 refer-
ring/segmentation tasks, verifying the mutual reinforcement effect of such unification.

3. We also introduce a novel PixelQA task that jointly requires object-centric referring, segmen-
tation, and QA in videos, where UniPixel establishes a strong baseline for this setting.

2 Related Work

Large Multi-modal Models The remarkable success of large multi-modal models (LMMs) has
shifted the paradigm of visual-language understanding from close-ended experts to open-ended task
solvers. Early attempts [44} 143|118 |110] involve an MLP projector or Q-Former [35]] to align visual
encoders to LLMs, enabling open-ended tasks such as visual question answering. With advanced
designs such as dynamic resolution and data augmentation, open-source models, e.g., Qwen-VL
[3,179, 4] and InternVL [[15} (76} [14]] series, have narrowed the gap with advanced proprietary models
like the GPT [59}160] and Gemini families [69,|19]. Recent studies 61} 26, 52, 38}, /49] also explore
test-time scaling on visual-language understanding. However, these methods are spatially coarse-
grained. UniPixel can also be regarded as an object-centric test-time scaling approach, where key
objects are first segmented then encoded to facilitate the subsequent reasoning process.

Visual Referring and Segmentation To meet the growing demand for fine-grained visual under-
standing [S1} 147,48l 146, |86], recent efforts have focused on enhancing LMMs with object referring
and segmentation capabilities, as compared in Fig.[2} LISA [33] is a representative model that enables
LMM-based segmentation by integrating SAM [32] as its decoder. They also introduced a novel rea-
soning segmentation task, requiring models to perform segmentation based on implicit queries. Other
works in this direction [[101} 71,163} 105} 182} 167, 28] have explored more advanced mask decoders,
more flexible tasks, and larger-scale datasets. Recent studies have also extended these capabilities to
videos [5,193] 98]]. Additionally, some research has examined regional understanding through boxes
[13] and masks [99,1100]. While recent approaches attempt to unify these two capabilities, they either
support only images [67] or rely on sub-optimal, tool-based pipelines [24]]. To the best of knowledge,
UniPixel is the first end-to-end method unifying object referring and mask prediction.
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Figure 3: The architecture of UniPixel. Given a video, a question, and visual prompts, the model
encodes them into tokens via the visual encoder, prompt encoder, and tokenizer, respectively, then
predicts a spatial-temporal mask for each visual prompt via the mask decoder. The masks are updated
into the object memory bank, and subsequently injected into the prompt for pixel-level reasoning.

3 Method

Problem Formulation We provide a unified definition for pixel-level reasoning tasks. Formally,
the inputs are an image or a video X, a text prompt 7, and N optional visual prompts {P; } ¥ ; where
each P; could be a point, box, or mask on a specific frame. The outputs are textual responses to
the prompt with K grounded spatial-temporal masks {Mz}fil Here, both N and K could be zero
(degenerating to a normal visual understanding task) and K is not necessarily equal to N, as the
model may segment extra objects/regions that are not specified by the visual prompts.

Overview Fig. 3] presents an overview of UniPixel. It is built upon the Qwen2.5-VL [4] framework,
consisting of an LLM backbone and a ViT-based visual encoder that supports dynamic resolution
inputs. Given a video and a text prompt, the model first tokenizes them via the visual encoder and
text tokenizer, then sends them into the LLM for response generation. To boost this framework from
holistic-level to pixel-level, we introduce (1) a prompt encoder (Sec[3.1)) supporting three types of
visual prompts, (2) an object memory bank (Sec[3.2)) for storing object information and injecting it
into the response generation process, and (3) a mask decoder (Sec[3.3)) for generating spatial-temporal
masks. We also extend the LLM’s vocabulary by adding <REF>, <MEM>, and <SEG> tokens. The
former two serve as placeholders in the input prompt that would be replaced by visual prompt and
memory tokens, respectively, while the <SEG> token is utilized to trigger and guide the mask decoding
process. Detailed designs and interactions among these components are illustrated as follows.

3.1 Prompt Encoder

This module aims to effectively encode each @)
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For sparse prompts (points and boxes), as shown in Fig. |4} we encode each position (z;, y;) as the sum
of a 2D Fourier embedding [75] and a learnable type embedding (indicating whether it is a single point,
top-left corner, or bottom-right corner). For box prompts, we merge the two positional embeddings



by concatenating them along the channel dimension and linearly projecting them back to the original
size. Frame indices are also encoded similarly with 1D Fourier embeddings. The resulting positional
and temporal embeddings are concatenated again, and then projected to the LLM’s embedding space
via a GELU — Linear block, such that the sparse coordinates in a point/box are encoded into a
compact high-dimensional token. This design is inspired by [32} 68]] with two key differences: (1) the
spatial-only embeddings are extended to include temporal information, and (2) the negative points
are discarded. For dense prompts (masks), we directly resize the binary masks and apply masked
pooling on the outputs of the visual encoder. An M—L projector (Linear — GELU — Linear) is
leveraged to project the pooled visual features to the LLM’s embedding space.

3.2 Object Memory Bank

Although sparse prompts contain rich positional and temporal information indicating the objects that
users are referring to, it is still hard for the model to focus on these important regions. Previous studies
[13L199,100] also confirm that direct region cropping can generally provide better object awareness
compared to positional pointers. To seamlessly integrate such a mechanism while preserving the
flexibility of visual prompts (e.g., allow pointing on a single frame instead of drawing complete
masks on all frames), we propose an object memory bank to bridge sparse visual prompts and dense
object masks. This is a hashmap where the keys are object IDs and the values are the corresponding
spatial-temporal masks. It is initialized as an empty storage for every chat session, and is dynamically
updated on demand. We define two operations for the object memory bank, namely memory pre-filling
and memory injection. Below is an example of memory-enhanced multi-round conversation.

e N

Prompt 1: How does the behavior of [1] <REF> differ from [2] <REF> and [3] <REF>?

<REF> detected, enhancing the prompt with object memory.

Memory Pre-filling Response:
The relevant regions for this question are [1] <SEG> [2] <SEG> [3] <SEG> [4] <SEG>. <« 4 objects saved into the memory

Memory Injected Prompt:

Here is a video with 4 frames denoted as <1> to <4>. The highlighted regions are as follows:
[1]: <1> <MEM> <2> <MEM> <3> <MEM> <— This object cannot be seen in the last frame

[2]: <I> <MEM> <2> <MEM> <3> <MEM> <4> <MEM>

[3]: <1> <MEM> <2> <MEM> <3> <MEM> <4> <MEM>

[4]: <1> <MEM> <2> <MEM> <3> <MEM> <4> <MEM>

How does the behavior of [1] differ from [2] and [3]?

\ J

Response 1: [1] appears disinterested and focuses on nibbling on the ground, while [2] is engaging with [4], who is offering
some food to [2] and [3].

Prompt 2: What food is [4] offering? <« Users can directly refer to objects in the memory

Response 2: [4] is offering carrots.

\ J

Memory Pre-filling This operation is triggered upon the detection of <REF> tokens in the input
prompt, aiming to thoroughly analyze the referred objects and predict their corresponding masks. In
this stage, the model responds with object IDs and <SEG> tokens for the relevant objects according to
the context, and predicts their spatial-temporal masks accordingly. These object-mask pairs are then
saved into the object memory bank.

Memory Injection We inject the features of the saved objects into the prompt to enhance object-
awareness. Similar to the mask prompt encoder described in Sec. [3.1] each frame-level object mask
is downsampled to match the resolution of visual tokens. We then apply masked pooling to aggregate
object-centric features. Each frame-level mask is condensed into a single feature token, projected
through the mask projector, and subsequently utilized to replace the corresponding <MEM> token
in the memory-injected prompt. Through this pre-filling and injection mechanism, object-centric
information is effectively integrated into the model inference process.

Why using object memory bank? An alternative is directly appending a <SEG> token to each
<REF> token, followed by masked pooled features obtained during inference. However, we do not
adopt this approach for two reasons: (1) During mask prediction, the <SEG> tokens, due to the
unidirectional nature of causal self-attention, are unable to aggregate the full context of the prompt,
thereby compromising the quality of predicted masks. (2) By utilizing the object memory bank, we
can effectively decouple regional understanding and mask prediction, allowing each to benefit from
referring and segmentation data during training, thus enhancing both capabilities.



Table 1: Comparison with state-of-the-art methods on ReVOS [93] val split. The best and second-
best results are marked bold and underlined, respectively.

| | Referring | Reasoning | Overall |

Method Size
| 7 F o OI&F | T F o OIJ&F | T F o J&F |

Non-LLM-based Specialists
MTTR [6] - 298 302 30.0 204 215 21.0 25.1 25.9 25.5 5.6
LMPM [22] - 29.0  39.1 34.1 133 243 18.8 212 317 26.4 32
ReferFormer [87] - 312 343 327 213 256 234 262 299 28.1 8.8
LLM-based Generalists
LISA [33] 13B 452 479 46.6 343 391 36.7 39.8 435 41.6 8.6
TrackGPT [74] 13B 483 50.6 49.5 38.1 429 40.5 432 468 45.0 12.8
VISA [93] 13B 556 59.1 574 420 467 443 48.8 529 50.9 14.5
HyperSeg [83] 3B 56.0 609 58.5 502 558 53.0 53.1 58.4 55.7 -
InstructSeg [84] 3B 548 592 57.0 492 547 51.9 520 569 54.5 -
GLUS [40] 7B 56.0  60.7 58.3 488 539 514 524 573 54.9 17.9
ViLLa [107] 6B - - - - - - 549  59.1 57.0 -
Sa2VA [98] 4B - - - - - - - - 53.2 -

UniPixel (Ours) ‘ 3B ‘62.3 66.7 64.5 57.1  62.1 59.6 59.7  64.4 62.1 19.0

UniPixel (Ours) 642 685 664 | 596 639 618 | 619 66.1 64.0 19.1

3.3 Mask Decoder

We adopt SAM 2.1 [68]] as the mask decoder to disentangle the discrete language modeling and
continuous mask prediction capabilities. For each <SEG> token, we extract its last-layer hidden
states, downsample them via an L—M projector (architecturally identical to the M—L projector),
and reshape them into two tokens. Using two tokens ensures better preservation of object information
when downsampling from high- to low-dimensional channel space. These tokens prompt the mask
decoder to predict the mask on the first frame, which is then propagated to the other frames.

3.4 Model Training

The training loss for UniPixel is a linear combination of language modeling loss and mask decoding
losses [68]], including a focal loss and dice loss for mask prediction, a mean-absolute-error (MAE)
loss for IoU prediction, and a cross-entropy loss for objectness prediction. The loss weights are set
to 1, 100, 5, 5, and 5, respectively. We train the model through a three-stage progressive alignment
recipe. The datasets are listed in Tab.[I2] In the first stage, we pre-train the sparse prompt encoder
using 851K regional captioning data. Then, we align the LLM and mask decoder by training the
L—M projector on 87K referring segmentation data. In the last stage, we further unfreeze the M—L
projector and mask decoder, and apply LoRA [27] on the visual encoder and LLM. The model is
jointly trained on a large-scale corpus with around 1M samples for diverse tasks.

4 Experiments

We evaluate the effectiveness of UniPixel by conducting extensive experiments across a diverse set of
benchmarks. Specifically, we study the following research questions.

Q1. Whether UniPixel is flexible and effective on basic image/video referring and segmentation
tasks compared to the corresponding representative methods?

Q2. How does it perform on the more challenging PixelQA task, which requires joint referring,
segmentation, and question answering in videos?

Q3. What effects does each architectural design contribute? More importantly, does the unified
modeling of referring and segmentation lead to a mutual reinforcement effect?

Detailed information about the benchmarks, evaluation metrics, implementation details, and more
experimental results can be found in the appendix.

4.1 Q1: Comparison with State-of-the-Arts on Referring and Segmentation Tasks

Reasoning Video Object Segmentation We begin with the most challenging ReVOS [93]] dataset,
which requires models to predict masks based on implicit text queries demanding complex reasoning
abilities based on world knowledge. The results are shown in Tab. |1} Our 3B variant outperforms all



Table 2: Comparison with state-of-the-art methods on referring video object segmentation (RVOS)
and motion-grounded video reasoning datasets, including MeViS [22]] (val), Ref-YouTube-VOS [73]]
(val), Ref-DAVIS17 [64] (val), and GroundMoRe [21] (test). The best and second-best results are
marked bold and underlined, respectively.

| | MeViS |  Ref-YouTube-VOS | Ref-DAVIS17 | GroundMoRe
Method Size
\ | g F J&F| I F J&F| I F J&F| I F J&F

Non-LLM-based Specialists

ReferFormer [87] - 29.8 322 31.0 61.3  64.6 62.9 58.1  64.1 61.1 11.2 143 12.7
LMPM [22] - 342 402 37.2 - - - - - - 127 140 133
OnlineRefer [85]] - - - - 61.6 655 63.5 61.6 677 64.8 - - -
LLM-based Generalists

PixelLM [71]] 7B 363  41.1 38.7 543 557 55.0 634 70.0 66.7 9.9 10.0 10.0
LISA [33] 13B 358  40.0 37.9 540 548 54.4 632 68.8 66.0 6.3 6.7 6.5
VISA [93] 13B | 41.8 47.1 44.5 614 647 63.0 67.0 738 70.4 53 4.7 5.9
VideoLISA [5] 38B | 413 47.6 444 61.7 657 63.7 649 727 68.8 - - -
VideoGLaMM [57] | 3.8B | 42.1 482 452 654 682 66.8 733  65.6 69.5 - - -
ViLLa [107] 6B 46.5 523 494 646 704 67.5 70.6  78.0 74.3 - - -
GLUS [40] 7B 485 542 51.3 65.5 69.0 67.3 - - - - - -
Sa2VA [98] 4B - - 46.2 - - 70.0 - - 73.8 - - -
MoRA [21] 7B - - - - - - - - - 274 269 272

UniPixel (Ours) 3B | 504 557 531 | 686 723 705 | 707 77.8 742 | 360 387 374
UniPixel (Ours) 7B | 523 571 547 | 702 741 721 | 714 800 757 | 462 49.0  47.6

Table 3: Comparison with state-of-the-art methods on image referring expression segmentation (RES)
and reasoning segmentation datasets, including RefCOCO/+/g [30} 56] and ReasonSeg [33] (val).
The best and second-best results are marked bold and underlined, respectively.

| | RefCOCO | RefCOCO+ | RefCOCOg | ReasonSeg
Method Size

‘ ‘ val testA testB ‘ val testA testB ‘ val(U) test(U) ‘ gloU cloU
Non-LLM-based Specialists
ReLA [42] - 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0 - -
X-Decoder [111] - - - - - - - 64.6 - 22.6 17.9
SEEM [112] - - - - - — - 65.7 - 255 21.2

LLM-based Image Generalists

NEXT-Chat [101] 7B 74.7 78.9 69.5 65.1 71.9 56.7 67.0 67.0 - -

PixelLM [71] 7B 73.0 76.5 68.2 66.3 71.7 583 69.3 70.5 - -
LISA [33] 7B 74.9 79.1 723 65.1 70.8 58.1 67.9 70.6 61.3 62.9
Groundhog [105] 7B 78.5 79.9 75.7 70.5 75.0 64.9 74.1 74.6 56.2 -
LaSagnA [82] 7B 76.8 78.7 73.8 66.4 70.6 60.1 70.6 71.9 48.8 472
M2SA 28] 13B 74.6 77.6 71.0 64.0 68.1 57.6 69.0 69.3 - -

LLM-based Video Generalists
VideoLISA [5] 3.8B 73.8 76.6 68.8 63.4 68.8 56.2 68.3 68.8 61.4 67.1

VISA [93] 7B 72.4 75.5 68.1 59.8 64.8 53.1 65.5 66.4 52.7 57.8
Vitron [24] 7B 755 79.5 72.2 66.7 72.5 58.0 67.9 68.9 - -
Sa2VA [98] 4B 78.9 - - 71.7 - - 74.1 - - -

UniPixel (Ours) 3B 80.5 82.6 76.9 743 78.9 68.4 76.3 71.0 64.0 56.2
UniPixel (Ours) 7B 82.5 83.8 79.8 76.5 81.0 70.9 71.5 78.4 65.3 58.0

existing methods with larger LLMs (including Sa2VA-4B [98]] also with SAM 2 decoder), achieving
62.1 overall J&F. The 7B model further boosts the performance to 64.0 7 &F — an improvement
of 12% over the previous state-of-the-art — demonstrating that UniPixel can effectively understand
implicit queries based on its world knowledge, and accurately generate masks as responses.

Referring Video Object Segmentation The performance comparisons on MeViS [22], Ref-
YouTube-VOS [73]], and Ref-DAVIS17 [64]] datasets are presented in Tab.[2| UniPixel consistently
achieves the best performance among its counterparts. Its advantage is particularly evident on the
more challenging MeViS dataset, where our 3B model outperforms GLUS-7B [40] by around 3.5%,
as well as the similarly sized VideoGLaMM-3.8B [57]] by 17%. More experimental results on MeViS
[22] val® set and Ref-SAV [98] val set are provided in Tab. E] and Tab. E], respectively. Ref-SAV
features long referring descriptions, large object motion, large camera motion, and heavy occlusion
compared with existing datasets. Given these complex descriptions and video content, our method
consistently performs better than counterparts, including those fine-tuned on the target dataset.

Motion-Grounded Video Reasoning We also evaluate our method on GroundMoRe [21]] dataset
(results shown in Tab. [2)), which highlights visual answer generation that requires joint spatial and



Table 4: Experimental results on MeViS [22] val® Table 5: Comparison on Ref-SAV [98] val set.

set. Post means applying post optimization. FT means fine-tuning after pre-/co-training.
Method | Size T| J F IJ&F Method | Size FT | J F T&F
LMPM [22] | - X | 365 439 402 UniRef++ [38] - X | 116 95 10.5
UNINEXT [92] - X | 88 64 7.6
LISA [33] 7B X | 399 465 @ 432 LMPM [22] _ X | 12 os 103
LISA [33] + XMem [IGJ 7B X 419 49.3 45.6 VISA |93] 7B X 13.2 113 11.8
VideoLISA [3] 7B X | 484 549 517 Sa2VA [O8] 8B X | 396 430 413
VideoLISA [3] + Post 7B X | 509 581 545
Sa2VA (98] 4B X - - 52.1 UniRef++ [BR] - v o| 158 134 146
Sa2VA [98] 8B X - - 57.0 Sa2VA [O8] 8B v/ | 483 517 500
UniPixel (Ours) 3B X | 56.1 632 59.7 UniPixel (Ours) 3B X 669  67.6 67.2
UniPixel (Ours) 7B X 569 629 59.9 UniPixel (Ours) 7B X 72.0 73.6 72.8

Table 6: Fine-tuned performance on referring expression segmentation (RES) datasets, including Ref-
COCO/+/g [30, 156]. The best and second-best results are marked bold and underlined, respectively.

‘ ‘ RefCOCO ‘ RefCOCO+ ‘ RefCOCOg
Method Size
‘ ‘ val testA testB ‘ testA testB ‘ val(U) test(U)
LISA [33] 7B 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
GSVA [89] 7B 77.2 78.9 73.5 65.9 69.6 59.8 72.7 73.3
OMG-LLaVA [104] 7B 78.0 80.3 74.1 69.1 73.1 63.0 72.9 72.9
GLaMM [67] 7B 79.5 83.2 76.9 72.6 78.7 64.6 742 74.9
Sa2VA 98] 4B 80.4 - - 74.3 - - 75.7 -
‘ 81.9 83.5 78.6 75.3 80.3 70.6 11.2 78.5

UniPixel (Ours) ‘ 3B

UniPixel (Ours) 7B 3.1 85.0 80.5 774 81.8 71.9 78.1 79.5

Table 7: Experimental results on referring expression comprehension (REC) datasets, including Ref-
COCO/+/g [30,156]. The best and second-best results are marked bold and underlined, respectively.

UniPixel (Ours) 3B
UniPixel (Ours) 7B

91.8 938 87.5 86.3  90.8 80.3 88.0 88.2
93.5 947 90.1 885 928 82.9 89.4 89.7

\ \ RefCOCO | RefCOCO+ | RefCOCOg
Method Size

| | val testA  testB | val testA  testB | val(U)  test(U)
OFA [80] - 80.0 83.7 76.4 68.3 76.0 61.8 67.6 67.6
Shikra [10] 7B 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2
MiniGPT-v2 [9] 7B 88.7 91.6 85.3 79.9 85.1 74.4 84.4 84.6
Vitron [24] 7B 90.9 93.2 89.3 83.7 89.1 76.9 86.4 87.0

temporal grounding. Note that we mainly compare the results with MoRA [21]], which is fine-tuned
on GroundMoRe while other methods are evaluated under the zero-shot setting. Benefit from the
strong pixel-level reasoning capability, UniPixel significantly performs better than the baseline.

Referring Expression Segmentation and Reasoning Segmentation Tab. [3|compares the image
segmentation capabilities using explicit and implicit queries. We evaluate our co-trained model on
RefCOCO/+/g [30,156] and ReasonSeg [33]]. While state-of-the-art performance has been achieved
on RES datasets, we observe that the reasoning segmentation data (239 samples) can be easily
overwhelmed by the other samples during training due to its limited size. Tab. [6] presents the RES
performance after fine-tuning. We follow the common practice that jointly fine-tunes the model on
RefCOCO/+/g datasets [30} 156, and then evaluate on them separately. These results demonstrate the
generalizability of UniPixel when facing both explicit and implicit queries.

Referring Expression Comprehension Our method also supports referring expression compre-
hension by inferring the bounding boxes from predicted masks. Its performance (accuracy with IoU
> 0.5) is compared with representative methods in Tab. [/| Benefiting from the high-quality mask
prediction, UniPixel can also achieve very competitive performance on this simpler task.

Referred Video Description and Question Answering We study UniPixel’s regional understand-
ing capabilities on VideoRefer-Bench [100], which contains two subsets for description and question
answering tasks. The comparisons are in Tab. B] and Tab. E} BQ, SQ, RQ, CQ, and FP denote basic
questions, sequential questions, relational questions, reasoning questions, and future predictions,
respectively. Both tasks leverage mask prompts as inputs, where single-frame and multi-frame modes
denote applying the masks only on a specific frame and on all frames, respectively. UniPixel can



Table 8: Comparison with state-of-the-art methods on VideoRefer-BenchP [100]. The best and
second-best results are marked bold and underlined, respectively.

| | Single-Frame | Multi-Frame

Method Size

| SC AD TD HD Avg | SC AD TD HD Avg
General LMMs
LLaVA-OV [34] 7B 2.62 1.58 2.19 2.07 2.12 3.09 1.94 2.50 241 248
Qwen2-VL [79] 7B 2.97 224 2.03 231 2.39 3.30 2.54 222 2.12 2.55
InternVL2 [76] 26B 3.55 2.99 2.57 2.25 2.84 4.08 3.35 3.08 2.28 3.20
GPT-40-mini [60] - 3.56 2.85 2.87 2.38 2.92 3.89 3.18 2.62 2.50 3.05
GPT-40 [60] - 3.34 2.96 3.01 2.50 2.95 4.15 3.31 3.11 243 3.25

Image Referring LMMs

Ferret [95]] ‘ 7B ‘3‘08 2.01 1.54 214 219 320 238 1.97 1.38 223

Osprey [99] 7B 3.19 2.16 1.54 245 2.34 3.30 266 210 1.58 241
Video Referring LMMs
Artemis [65] 7B - 342 1.34 1.39 2.90 2.26

VideoRefer [100] 4.41 327 3.03 297 342 | 444 327 310 3.04 346

UniPixel (Ours) 3B 404 315 310 337 342 | 408 3.13 313 342 344
UniPixel (Ours) 7B 445 332 305 3.04 347 448 334 303 3.07 348

Elysium [77] 7B 235 030 002 359 1.57
7B

Table 9: Comparison with state-of-the-art methods on  Table 10: Evaluation results on our newly
VideoRefer-Bench® [100] (mask prompts). MF denotes  introduced PixelQA task. All the visual
multi-frame mode. Full question types are in Sec. @ prompts are applied in a single frame. See
Sec.[d.2)for detailed settings.

Method |Size. MF| BQ SQ RQ CQ FP Avg

General LMMs Method | Size | 7 F  J&F | Ace

LLaVA-OV [34] | 7B X | 587 629 647 874 763 674 AT

Qwen2-VL[79] | 7B X | 620 69.6 549 873 746 66.0 L B

InternVL?2 [76] 26B X | 585 635 534 880 789 65.0 8;5;22/&/214[?76911 ggg - - ggg

GPT4o-mini[60] | - X |57.6 67.1 565 859 754 658 o :

GPT-4o [60] X 1623 745 660 880 737 713 UniPixel (Ours) | 3B | 57.3 644  60.9 71.1
o - - - - : : : UniPixel (Ours) | 7B | 569 645 60.7 | 715

;WW [/;;]u-/-mg WI‘Z‘B X | 352 447 419 704 746 488 Box Prompts

erret ‘ ‘ i . . . . .

) InternVL2 [76] | 26B - - - 61.3
Osprey [99] 7B X | 459 471 300 486 237 399 QwenavL W | 728 | - I 5
Video Referring LMMs UniPixel (Ours) | 3B | 57.8 64.7 61.3 | 70.3
VideoRefer [I00] | 7B X | 754 68.6 593 894 781 71.9 UniPixel (Ours) | 7B | 58.1 64.9 615 | 705
UniPixel (Ours) | 3B X | 736 703 60.7 888 780 722 Mixed (50% Points + 50% Boxes)

UniPixel Ours) | 7B X | 717 732 64.6 90.1 79.6 73.8

InternVL2 [76] | 26B | - - - 1609
VideoRefer [I00] | 7B v | - 706 605 - - 721 Qwen2-VL[79] | 72B | - - - |69l
UniPixel Ours) | 3B« | 753 707 623 874 772 7238 UniPixel (Ours) | 3B | 572 64.1 60.6 | 70.8
UniPixel Ours) | 7B« | 795 747 644 908 815 76.3 UniPixel (Ours) | 7B | 57.5 647 611 | 710

effectively comprehend both types of prompts, and accurately respond with object-centric descriptions
or answers, surpassing strong models including GPT-40 [60] and VideoRefer [[100].

4.2 Q2: Pixel-Level Video Question Answering (PixelQA)

We design the new PixelQA task based on VideoRefer-Bench® [100], where the original mask
prompts are replaced with more challenging point or box prompts. Given these ambiguous visual
cues, models are expected to correctly identify the target object according to the question and the
visual prompt, then respond with both the textual answer and the corresponding object masks.
We report the mask prediction 7 &F and MCQ accuracy in Tab. [I0} Note that none of the existing
methods supports this scenario. Thus, we apply set-of-mark prompts [94] directly on video frames,
and evaluate the QA accuracies of two strong LMMs [79,[76] as our baselines. Aside from point- or
box-only prompts, we also explore a more flexible setting that randomly chooses different prompts
for different objects. The results verify that our memory pre-filling & injection paradigm effectively
enhances the model’s reasoning capabilities. Visualizations of this task are shown in Fig. 5]

4.3 Q3: Key Ablation Studies

Effect of Task Unification We study the effect of task unification in Tab.[11|(a). Unifying referring
and segmentation capabilities into a single model and training them jointly leads to better results



If [1] continues moving forward, what is a likely future event?
(A) The bear will encounter other animals (B) The bear will find a place to rest (C) The bear will start running (D) The bear will climb the stone wall

What is a likely future event with [1]?
(A) He will stop and rest (B) He will start walking slowly (C) He will continue to navigate through more obstacles (D) He will sit down and take a break

How is [4] related to [2]?
(A) [4] is holding [2] (B) [4] is controlling [2] with a leash (C) [4] is walking away from [2] (D) [4] is ignoring [2]

_J

Figure 5: Visualization of the outputs from UniPixel on PixelQA task. Star marks and boxes
refer to point and box prompts, respectively. The boxed frames denote where the visual prompts are
applied. Given different types of visual prompts on a single frame, our method can flexibly infer the
relevant object, track it across the entire video, and involve its features in reasoning.

Table 11: Key ablation studies with UniPixel-3B on PixelQA (mixed). See Sec. for explanations.

(a) Task Unification (b) Object Memory Bank (c) Prompt Encoder & Mask Decoder
Refer Segment Memory | 7&F | Acc  Referring Method | T&F | Ace Encoder | Decoder | J&F | Acc
v - 64.6 @ <REF> 46.8 | 64.5 w/o Time - 443 63.7
v 47.5 - @ <REF><SEG> 47.8 | 649 w/ Time - 49.0 68.5
v v 482 | 674 ® <REF><SEG> + Pooling | 47.5 | 66.3
- Independent 46.1 66.2
4 4 v/ | 490 |68.5 @ Object Memory Bank | 49.0 | 68.5 = Propagation | 49.0 | 68.5

on both tasks (first three rows), demonstrating the mutual reinforcement effect of such unification.
Incorporating memory pre-filling as an auxiliary task (last row) brings extra improvements.

Effect of Object Memory Bank Tab.[T1|(b) verifies the effectiveness of object memory bank. @
means using a single token for each referred object. @ means adding an extra segmentation token to
segment it as an auxiliary task. ® further appends masked-pooled visual tokens after it. The results
show that (1) both adding auxiliary segmentation task and masked-pooled features help regional
understanding, and (2) decoupling them via object memory bank can further boost the performance.

Design Space of Prompt Encoder & Mask Decoder We compare different prompt encoder
and mask decoder designs in Tab.[TT](c). The performance significantly drops when the temporal
encoding in the prompt encoder is removed (first two rows). For the mask decoder (last two rows),
we explore an alternative strategy that treats video frames independently (as batched images), which
could largely accelerate inference but lead to sub-optimal accuracies. We hypothesize that this is
because the LLM-generated <SEG> token cannot well-capture the object information in all frames,
thus disentangling the segmentation and tracking capabilities to an external module is reasonable.

5 Conclusion

In this work, we proposed UniPixel, a large multi-modal model that supports flexible pixel-level
visual reasoning. It unifies the internal representations of referred and segmented objects through
a novel object memory bank. We observe that by such unification, the performance of object
referring and segmentation can be jointly enhanced. Extensive experiments on diverse pixel-level
understanding tasks, including the PixelQA task, demonstrate the significance of the proposed
method. We hope this work inspires future advancements in pixel-level visual understanding.
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Appendix

In this appendix, we provide more details about the training data, model implementation, and experi-
mental settings to complement the main paper. Additional analysis, ablation studies, visualizations,
and discussions are also incorporated. Below is the table of contents.

A. Model

1. Implementation Details
2. Training Recipe

B. Experiments

1. Tasks and Benchmarks

2. Evaluation Metrics

3. More Experimental Results
4. Ablation Studies

5. Qualitative Results

C. Discussions

1. Limitations & Future Work
2. Potential Societal Impacts

D. Licenses

A Model

A.1 Implementation Details

We instantiate our base models with 3B and 7B versions of Qwen2.5-VL [4]. Both variants employ
pre-trained SAM 2.1 [68] with Hiera Base+ [[72]] backbone as the mask decoder. The M—L projector
is initialized with the weights from the V—L projector of Qwen2.5-VL. The hidden size inside the
prompt encoder is 256. To reduce GPU memory and accelerate training, we randomly sample 8
frames per video, with each frame resized to 316° ~ 4482 pixels (128 ~ 256 tokens per frame). The
frame sampling strategies follow the specifications of each benchmark during inference. The mask
decoder has a fixed resolution of 768 x 768. For each segmentation sample, up to 5 objects are
randomly selected to compute the mask prediction losses. During training, LoRA adapters [27] with
rank=128 and alpha=256 are applied to all QKVO layers in the visual encoder and LLM. The input
sequences are restricted to 4K tokens. We train the model with 8 RTX A6000 Ada (48G) GPUs, with
a global batch size of 256 for stages 1 and 2, and 32 for stage 3. In the first two stages, the learning
rates are set to 1e-3. In the last stage, it is set to Se-6 for the mask decoder and 2e-5 for all the other
parameters, respectively. A linear warmup in the first 3% steps followed by cosine decay is adopted
in all stages. The configurations of datasets are introduced in the following section.

A.2 Training Recipe

The detailed distribution of training datasets for UniPixel is shown in Tab. Within the three-stage
training recipe, we first pre-train the sparse prompt encoder using short caption samples from Inst-IT
[62]] and VideoRefer [100]]. For each sample, we randomly select a point inside the ground truth
mask (50%) or generate an augmented box from it (50%). This stage aims to enable the model with
simple visual prompt comprehension and regional captioning capabilities on images and videos. In
the second stage, we align the LLM and mask decoder using referring object segmentation datasets
[30,156,[73]. We use short caption/query samples for the first two stages to focus on alignment rather
than knowledge learning. For the last stage, we collect a large-scale, high-quality corpus called
UniPixel-SFT- 1I"E] to jointly train the model on diverse pixel-level tasks. The original annotations
have been rewritten using task-specific templates to incorporate instructions. All the repurposed
datasets and pre-processing pipelines will be publicly available to facilitate future research.

*https://huggingface.co/datasets/PolyU-ChenLab/UniPixel-SFT- 1M
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Table 12: The distribution of training datasets for UniPixel. We use different background colors to
denote object referring , object segmentation , regional understanding , memory pre-filling , and

general video understanding data, respectively.

| | Inputs | Outputs |
Stage Dataset #Sampl #Repeat Ratio
| | Text Image Video Point Box Mask | Text Mask |

1 Inst-IT-Image-Short-Caption [62] v v v v v 351K 1 41.2%
VideoRefer-Short-Caption [100] v v v v v 500K 1 588%
RefCOCO [30] v v v v 17K 5 20.8%
RefCOCO+ [30] v v v v 17K 5 20.8%

2 RefCOCOg [56] v v v v 22K 5 26.8%
RefClef [30] v v v v 18K 5 22.0%
Ref-YouTube-VOS [73] v v v v 13K 3 95%
Osprey-Conversation [99] v v v v 1.4K 5 0.1%
Osprey-Detail-Description [99] v v v v 29K 5 25%
Osprey-Pos-Neg [99] v v v v 20K 5 17%
VideoRefer-Detailed-Caption [100] | v v v v 120K 5 10.1%
VideoRefer-QA [100] v v v v 69K 5 58%
Inst-IT-Video-QA [62] v v v v 159K 5 13.4%
VideoRefer-QA-Memory [100] v v v v v v 69K 3 35%
Inst-IT-QA-Memory [62] v v v v v v 158K 3 8.0%
RefCOCO [30] v v v v 17K 10 29%
RefCOCO+ [30] v v v v 17K 10 29%
RefCOCOg [56] v v v v 22K 10 3.7%
RefClef [30] v v v v 18K 10 3.0%
ReasonSeg [33] v v v v 1.6K 10 03%

3 ADE20K [108] v v v v 20K 3 1.0%
COCOStuff [8] v v v v 118K 3 6.0%
Mapillary Vistas [58] v v v v 18K 3 09%
PACO-LVIS [66] v v v v 46K 3 23%
PASCAL-Part [11] v v v v 4.4K 3 02%
Ref-YouTube-VOS [73] v v v v 13K 5 1L1%
Ref-DAVIS17 [64] v v v v 0.6K 10 0.1%
Ref-SAV [98] v v v v 56K 3 2.8%
MeViS [22] v v v v 23K 5 1.9%
LV-VIS [78] v/ v/ oo/ 11K 3 0.6%
ViCas [2] v v v v 41K 3 21%
ReVOS [93] v v v v 29K 5 25%
GroundMoRe [21]] v v v v 5.6K 3 03%
LLaVA-1.5-Mix-665K [43] v v v 647K 1 10.9%
VideoGPT+ Instruct [53] v v v 573K 1 97%

B Experiments

B.1 Tasks and Benchmarks

Our method is extensively evaluated across 9 fine-grained image/video understanding tasks. The
benchmark(s) used for each task are listed as follows:

Reasoning Video Object Segmentation: ReVOS [93]]

Referring Video Object Segmentation: MeViS [22], Ref-YouTube-VOS [73]], Ref-DAVIS17 [64]], Ref-SAV [98]]
Motion-Grounded Video Reasoning: GroundMoRe [21]]

Referring Expression Segmentation: RefCOCO [30], RefCOCO+ [30], RefCOCOg [56]

Reasoning Segmentation: ReasonSeg [33]

Referring Expression Comprehension: RefCOCO [30], RefCOCO+ [30], RefCOCOg [56]

Referred Video Description: VideoRefer-BenchP [100]

Referred Video Question Answering: VideoRefer-Bench® [[100]

Flexible Pixel-Level Understanding: PixelQA (Ours)

O XN NN R LN

B.2 Evaluation Metrics

For video segmentation tasks, we adopt J &F as the main metric to jointly consider region similarity
J and contour accuracy F. Image segmentation is evaluated using cloU (the cumulative intersection
over the cumulative union) and gloU (the average of all per-image IoUs) following existing work. For
referred video description and question answering tasks, we follow the official evaluation protocols to
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Table 13: Performance comparison on general video question answering (VideoQA) on MVBench
[37]. Note that UniPixel is the only model supporting pixel-level referring & segmentation.

Model |Size| AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI |Avg.
GPT-4V [59] | - |55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0|43.5

Video-ChatGPT [54]| 7B [23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5|32.7
Video-LLaMA [102]| 7B |27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0|34.1

VideoChat [36] 7B |33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0|35.5
Video-LLaVA [39] | 7B [46.0 42.5 56.5 39.0 53.5 53.0 48.0 41.0 29.0 31.5 82.5 45.0 26.0 53.0 41.5 33.5 41.5 27.5 38.5 31.5/43.0
TimeChat [70] 7B 40.5 36.0 61.0 32.5 53.0 53.5 41.5 29.0 19.5 26.5 66.5 34.0 20.0 43.5 42.0 36.5 36.0 29.0 35.0 35.0|38.5
PLLaVA [91] 7B |58.0 49.0 55.5 41.0 61.0 56.0 61.0 36.0 23.5 26.0 82.0 39.5 42.0 52.0 45.0 42.0 53.5 30.5 48.0 31.0|46.6
ST-LLM [45] 7B [66.0 53.5 84.0 44.0 58.5 80.5 73.5 38.5 42.5 31.0 86.5 36.5 56.5 78.5 43.0 44.5 46.5 34.5 41.5 58.5|54.9
VideoGPT+ [33] 4B |69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0|58.7

VideoChat2 [37] 7B |75.5 58.0 83.5 50.5 60.5 87.5 74.5 45.0 47.5 44.0 82.5 37.0 64.5 87.5 51.0 66.5 47.0 35.0 37.0 72.5|60.4
UniPixel (Ours) | 3B |69.5 62.5 83.0 48.5 76.5 86.5 66.5 38.0 49.0 40.5 87.0 49.0 74.0 95.0 49.0 45.0 63.5 34.5 58.0 73.5|62.5

Table 14: Effectiveness justification of multi-stage training. The best and second-best results are
marked bold and underlined, respectively. The three-stage recipe leads to optimal performance.

| ReVOS | MeVi$ (val®) | VideoRefer-Bench®
Stage 1 Stage2  Stage 3
| F J&F | T F J&F | Single-Frame  Multi-Frame
v 583 63.6 61.0 548 619 58.4 71.1 71.5
v v 590 634 61.2 552 621 58.7 71.8 723
v v 59.6 635 61.6 557 625 59.1 712 71.6
v v v ‘ 59.7 644 62.1 ‘ 56.1  63.2 59.7 ‘ 72.2 72.8

report GPT-4o0 [60] scores and MCQ accuracy, respectively. For referring expression comprehension,
we leverage mean accuracies, where a predicted bounding box is considered correct when it has the
intersection over union (IoU) with the ground truth no less than 0.5.

B.3 More Experimental Results

General Video Question Answering We also evaluate UniPixel on MVBench [37] to compare its
general video understanding capabilities with existing methods. The results are illustrated in Tab.[T3]
Note that our method is the only one in the table that supports referring and segmentation. By jointly
training on holistic-level and pixel-level data, UniPixel can effectively balance the capabilities under
both scenarios, demonstrated by the strong performance compared with holistic-level models.

B.4 Ablation Studies

Effect of Multi-stage Training We investigate the effectiveness of multi-stage training in Tab.[T4]
As shown in the first line, directly training the model using large-scale data only leads to sub-optimal
performance, due to the unaligned representations among prompt encoder, LLM, and mask decoder.
We observe that pre-training either the sparse prompt encoder or the L—M projector (the second and
third lines) brings performance gains on both tasks (referring and segmentation). We hypothesize that
this is because pre-aligning either of them can alleviate the burden of joint-task learning in stage 3.
The last row verifies that the performance can be further boosted by pre-aligning both of them.

Number of Hidden Tokens for Mask Decoder As mentioned in the main paper, there is a huge
gap between the feature dimensions of the LLM and the mask decoder, thus splitting the <SEG> token
into more hidden tokens can better preserve the object information from the LLM. We ablate this
mechanism in Tab. According to the results, using only 1 hidden token cannot fully preserve the
object information, as the mask prediction performance is sub-optimal. However, we also observe
that using more than 2 hidden tokens (e.g., 4 or 8) only brings negligible performance gain. Therefore,
we choose 2 hidden tokens per object in our final model.

Training Strategy for the M—L projector The M—L projector aims to project the masked-pooled
object-centric features to the LLM’s embedding space. Since the object features originate from the
visual encoder, it is possible to re-use the pre-trained weights of the original V—L projector in
Qwen2.5-VL. Its effects are studied in Tab. We investigated two strategies: 1) re-using the
weights and 2) adding an extra pre-training stage for better alignment. The comparison shows that
directly re-using weights without extra pre-training can achieve the best results.
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Table 15: Ablation study on the number of hid-  Table 16: Ablation study on M—L projector. Init
den tokens for each <SEG>. Performance gains  and PT denote weight initialization from V—L

are negligible with more than 2 tokens/object. projector and extra pre-training, respectively.
| ReVOS | MeViS (val®) | VideoRefer-Bench® | PixelQA
#Tokens Init PT
‘ J F TJ&F ‘ J F T&F ‘ Single-Frame Multi-Frame ‘ Mixed Acc
1 59.6 635 61.6 558 625 59.2 71.4 71.9 67.7
2 59.7 644 62.1 56.1 63.2 59.7 v 71.5 71.7 67.4
4 59.8 639 619 | 568 63.1 599 v 72.4 726 68.2
8 595 640 618 | 564 628 596 Vv 722 72.8 68.5

Table 17: Ablation study on training data used in stage 3. The best and second-best results are marked
bold and underlined, respectively. Gradually adding more pixel-level data brings performance gains.

| ReVOS |  MeViS(val®) |  VideoRefer-Bench®
Regional Segmentation Memory General
‘ J F T&F ‘ J F TJ&F ‘ Single-Frame ~ Multi-Frame
v - - - - - - 72.1 72.0
v 589 63.8 61.4 56.0 632 59.6 - -
v v 59.2 637 61.5 558 63.1 59.5 123 72.6
v v v 59.6 645 62.1 56.3 635 59.9 72.4 72.5
v v v v | 59.7 644 621 | 561 632 597 | 72.2 72.8

Combination of Training Data Tab. |17/|studies the effect of the combination of multi-task co-
training data in stage 3. Compared with training only on the regional or segmentation data, leveraging
both of them leads to considerable performance on both tasks. Incorporating memory pre-filling data
(requiring both referring and segmentation) can further boost the performance. We also mix some
general holistic-level video understanding data to preserve the original capabilities of the pre-trained
model, while it slightly affects the performance on pixel-level tasks.

B.5 Qualitative Results

Fig.[6]~[LT]present more visualizations of outputs from UniPixel on different pixel-level understanding
tasks. Our method can effectively handle flexible visual prompts [100], implicit queries [33,(93], long
queries [98]], and motion-grounded questions [21]].

C Discussion

C.1 Limitations & Future Work

Due to the limited computing resources, we did not further scale up the training data to incorporate
more pixel-level tasks such as grounded caption generation (GCG) on images [67]] or videos [57],
which are interesting scenarios and their data may bring more performance gains. Besides, the mask
decoder currently predicts the first mask on the first frame and propagates it to the following frames,
while it potentially supports predicting on the best frame (defined as the frame with the best view of
the target) and propagates it to both sides of the video. We will focus in our future work to explore
more pixel-level understanding tasks and more flexible mechanisms for the mask decoder.

C.2 Potential Societal Impacts

This work introduces a new framework for pixel-level visual-language understanding, which could
potentially be used in education, surveillance, and healthcare industries, where flexible interactions
with the users and fine-grained understanding of images & videos are required. In other scenarios
requiring multi-modal assistants, our method can also serve as a more advanced alternative. To the
best of our knowledge, there are no potential negative societal impacts to declare.

D Licenses

Our model is built based on the pre-trained Qwen2.5-VL [4] and SAM 2.1 [68] models. They are both
licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).
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What action does [1] perform that involves [3]?
(A) [1] extends an arm across [3]'s chest (B) [1] hands something to [3] (C) [1] talks to [3] (D) [1] ignores [3]

What is [1] wearing?
(A) Blue sweatshirt and black jeans (B) Red sweatshirt and light blue jeans (C) Green t-shirt and white pants (D) Yellow hoodie and dark blue jeans

If [1] continues to move forward, what is a likely future event involving [2]?
(A) [2] will run away (B) [2] will sit down and stop moving (C) [2] will start barking (D) [2] will continue walking by the wheelchair

If <object1><region> continues riding the bike, what is a likely future event?
(A) [1] will stop (B) [1] will start running (C) [1] will change a different outfit (D) [1] will continue to challenge different high difficulty movements

Figure 6: Visualization of the predictions from UniPixel on PixelQA.

Please segment the cow that is the furthest from the camera in this video.

Which goldfish is on the left side of the screen at the beginning of the video? Please provide the segmentation mask.

Where is the instrument that serves to shield from the sun or protect from rain and snow?

Can you find the skunk that has black fur all over its body and a tuft of white fur on its head and the tip of its tail?

Which fervet(s) is/are being licked by a cat consistently? Please provide the segmentation mask.

Can you segment the insect(s) belonging to the superfamily Papilionoidea of the Lepidoptera order in this video?

Please segment the zebra which is younger in this video.

Figure 7: Visualization of the predictions from UniPixel on ReVOS [93].
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Please segment the black swan in this video.

Where is the man wearing a cap and shorts in this video? Respond with the segmentation mask.

Can you find the blue wooden car in the frames?

Segment and track the green motorbike in this video.

Where is the rope? Give me the segmentation results directly.

Figure 8: Visualization of the predictions from UniPixel on Ref-DAVIS17 [64].

Q: Who might not open the cooler if not for feeding the walrus a fish? A: The woman.
Q: What might not be given to the woman by the man if he did not eat by himself? A: The bag.
Q: Who opens the ziploc bag to transfer the crushed Oreo cookies into the bowl? A: The girl.
Q: Who dribbles the ball before he shoots it? A: The man in the black shorts.
Q: Who kicks the ball into the goal? A: The boy.
Q: Who asked if the little girl could carry the box before she picked it up? A: The man.

Figure 9: Visualization of the predictions from UniPixel on GroundMoRe [21]].
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Find the object according to the description: The object is a dark-colored backpack with light-colored accents, featuring multiple
compartments and pockets, securely fastened to an individual's back. The person is dressed in dark clothing and ascending an
escalator in a public setting, likely a mall or transportation hub. The backpack has adjustable straps and a top handle, appearing
functional for carrying various items. The individual moves steadily up the escalator, indicating a purposeful journey.

Please segment the object according to the description: The object is a person with long dark hair, wearing a dark top and a
patterned skirt with geometric designs. This individual is stationary or moving very slowly in the background of a retail store,
possiloly a furniture or home goods store. The person remains in close proximity to another shopper pushing a shopping cart,
suggesting they might be together or interacting. The scene captures a typical shopping experience.

Analyze the following sentences and provide the corresponding segmentation mask: The object is a dark-colored sedan, likely blue
or black, parked on an unpaved surface, possibly a dirt road or an area with loose soil. It has four doors, a visible rear spoiler on
the trunk, silver wheels, and tinted windows. The car is slightly tilted, suggesting it might be parked on uneven ground or
experiencing some form of imbalance. Throughout the video, the sedan remains stationary, with no indication of movement or
actions being performed by the vehicle.

Figure 10: Visualization of the predictions from UniPixel on Ref-SAV [98].

Find the lens that is more
suitable for photographing
nearby objects.

Which part of the vehicle
must be used to display
identifying information as
required by law? Segment
the target directly.

Where is the goat nearest
to the bottom stone? Give
me the segmentation mask.

What item in the picture can
provide information to hel,
guide travelers through this
rugged terrain that can be
challenging to navigate?

Please localize the place
where piano players should
sit in this image.

Where is the place where
the garbage should be put?
Please respond with the
segmentation mask.

Segment the place where the
patient lies down to receive
examination in this image.

In some rural areas, horse-
drawn carts are still used for
transportation and carrying
goods. What is the main
source of power that drives
the cart in the picture?

Figure 11: Visualization of the predictions from UniPixel on ReasonSeg [33].
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